Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36616271

RESUMO

Bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae (Psa) is a serious threat to kiwifruit production worldwide. Four biovars (Psa biovar 1; Psa1, Psa biovar 3; Psa3, Psa biovar 5; Psa5, and Psa biovar 6; Psa6) were reported in Japan, and virulent Psa3 strains spread rapidly to kiwifruit production areas worldwide. Therefore, there is an urgent need to develop critical management strategies for bacterial canker based on dissecting the dynamic interactions between Psa and kiwifruit. To investigate the molecular mechanism of Psa3 infection, we developed a rapid and reliable high-throughput flood-inoculation method using kiwifruit seedlings. Using this inoculation method, we screened 3000 Psa3 transposon insertion mutants and identified 91 reduced virulence mutants and characterized the transposon insertion sites in these mutants. We identified seven type III secretion system mutants, and four type III secretion effectors mutants including hopR1. Mature kiwifruit leaves spray-inoculated with the hopR1 mutant showed significantly reduced virulence compared to Psa3 wild-type, indicating that HopR1 has a critical role in Psa3 virulence. Deletion mutants of hopR1 in Psa1, Psa3, Psa5, and Psa6 revealed that the type III secretion effector HopR1 is a major virulence factor in these biovars. Moreover, hopR1 mutants of Psa3 failed to reopen stomata on kiwifruit leaves, suggesting that HopR1 facilitates Psa entry through stomata into plants. Furthermore, defense related genes were highly expressed in kiwifruit plants inoculated with hopR1 mutant compared to Psa wild-type, indicating that HopR1 suppresses defense-related genes of kiwifruit. These results suggest that HopR1 universally contributes to virulence in all Psa biovars by overcoming not only stomatal-based defense, but also apoplastic defense.

2.
PeerJ ; 9: e12405, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760389

RESUMO

Pseudomonas savastanoi pv. glycinea (Psg) causes bacterial blight of soybean. To identify candidate virulence factors, transposon-mediated mutational analysis of Psg was carried out. We syringe-inoculated soybean leaves with Psg transposon mutants and identified 28 mutants which showed reduced virulence from 1,000 mutants screened. Next, we spray-inoculated soybean leaves with these mutants and demonstrated that the algU mutant showed significantly reduced virulence together with reduced bacterial populations in planta. Expression profiles comparison between the Psg wild-type (WT) and algU mutant in HSC broth revealed that expression of coronatine (COR)-related genes (including cmaA and corR) were down-regulated in the algU mutant compared with Psg WT. Moreover, we also showed that COR production were reduced in the algU mutant compared with WT. We also demonstrated that algD, which is related to alginate biosynthesis, showed reduced expression and biofilm formation was significantly suppressed in the algU mutant. Furthermore, hrpL also showed less expression in the algU mutant. These results indicate that AlgU plays a critical role in promoting Psg pathogenesis by regulating multiple virulence factors.

3.
Front Plant Sci ; 12: 726565, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539719

RESUMO

Asian soybean rust (ASR) caused by Phakopsora pachyrhizi, an obligate biotrophic fungal pathogen, is the most devastating soybean production disease worldwide. Currently, timely fungicide application is the only means to control ASR in the field. We investigated cellulose nanofiber (CNF) application on ASR disease management. CNF-treated leaves showed reduced lesion number after P. pachyrhizi inoculation compared to control leaves, indicating that covering soybean leaves with CNF confers P. pachyrhizi resistance. We also demonstrated that formation of P. pachyrhizi appressoria, and also gene expression related to these formations, such as chitin synthases (CHSs), were significantly suppressed in CNF-treated soybean leaves compared to control leaves. Moreover, contact angle measurement revealed that CNF converts soybean leaf surface properties from hydrophobic to hydrophilic. These results suggest that CNF can change soybean leaf surface hydrophobicity, conferring resistance against P. pachyrhizi, based on the reduced expression of CHSs, as well as reduced formation of pre-infection structures. This is the first study to investigate CNF application to control field disease.

4.
J Gen Plant Pathol ; 86(4): 257-265, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32412555

RESUMO

Bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae (Psa) is a serious threat to kiwifruit production. Highly virulent strains of Psa biovar3 (Psa3) have spread rapidly to kiwifruit production areas worldwide. Therefore, there is an urgent need to develop critical management strategies for bacterial canker based on dissecting the interactions between Psa and kiwifruit. Here, we developed a rapid and reliable flood-inoculation method using kiwifruit seedlings grown on Murashige and Skoog medium. This method has several advantages over inoculation of conventional soil-grown plants. We demonstrated the utility of a kiwifruit seedling assay to study the virulence of Psa biovars and Psa3 virulence factors, including the type III secretion system (T3SS). Kiwifruit seedlings inoculated with Psa3 developed severe necrosis within 1 week, whereas those inoculated with a T3SS-deficient hrcN mutant of Psa3 did not. This method was also useful for analyzing expression profiles of genes involved in Psa3 virulence during infection, and revealed that the expression of genes encoding the T3SS and type III secreted effectors were strongly induced in planta. Our results indicate that the T3SS has an important role in Psa3 virulence, and the flood-inoculation assay using kiwifruit seedling is suitable for analyzing Psa and kiwifruit interactions.

5.
PeerJ ; 7: e7698, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31579596

RESUMO

Pseudomonas cannabina pv. alisalensis (Pcal), which causes bacterial blight disease of Brassicaceae, is an economically important pathogen worldwide. To identify Pcal genes involved in pathogenesis, we conducted a screen for 1,040 individual Pcal KB211 Tn5 mutants with reduced virulence on cabbage plants using a dip-inoculation method. We isolated 53 reduced virulence mutants and identified several potential virulence factors involved in Pcal virulence mechanisms such as the type III secretion system, membrane transporters, transcription factors, and amino acid metabolism. Importantly, Pcal is pathogenic on a range of monocotyledonous and dicotyledonous plants. Therefore, we also carried out the inoculation test on oat plants, which are cultivated after cabbage cultivation as green manure crops. Interestingly among the 53 mutants, 31 mutants also exhibited reduced virulence on oat seedlings, indicating that Pcal optimizes its virulence factors for pathogenicity on different host plants. Our results highlight the importance of revealing the virulence factors for each plant host-bacterial interaction, and will provide new insights into Pcal virulence mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...